laura is hosted by Hepforge, IPPP Durham
Laura++  3.6.0
A maximum likelihood fitting package for performing Dalitz-plot analysis.
LauLinearPdf.cc
Go to the documentation of this file.
1 
2 /*
3 Copyright 2006 University of Warwick
4 
5 Licensed under the Apache License, Version 2.0 (the "License");
6 you may not use this file except in compliance with the License.
7 You may obtain a copy of the License at
8 
9  http://www.apache.org/licenses/LICENSE-2.0
10 
11 Unless required by applicable law or agreed to in writing, software
12 distributed under the License is distributed on an "AS IS" BASIS,
13 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 See the License for the specific language governing permissions and
15 limitations under the License.
16 */
17 
18 /*
19 Laura++ package authors:
20 John Back
21 Paul Harrison
22 Thomas Latham
23 */
24 
29 #include <iostream>
30 #include <vector>
31 using std::cerr;
32 using std::cout;
33 using std::endl;
34 
35 #include "LauConstants.hh"
36 #include "LauLinearPdf.hh"
37 
38 #include "TMath.h"
39 #include "TSystem.h"
40 
41 LauLinearPdf::LauLinearPdf( const TString& theVarName,
42  const std::vector<LauAbsRValue*>& params,
43  Double_t minAbscissa,
44  Double_t maxAbscissa ) :
45  LauAbsPdf( theVarName, params, minAbscissa, maxAbscissa ),
46  slope_( 0 ),
47  posflag_( kTRUE )
48 {
49  // Constructor for the linear PDF.
50  //
51  // The parameters in params are the slope and y-intercept of the line.
52  // The last two arguments specify the range in which the PDF is defined, and the PDF
53  // will be normalised w.r.t. these limits.
54 
55  slope_ = this->findParameter( "slope" );
56 
57  if ( ( this->nParameters() != 1 ) || ( slope_ == 0 ) ) {
58  cerr << "Warning. LauLinearPdf requires 1 parameter: \"slope\"." << endl;
59  gSystem->Exit( EXIT_FAILURE );
60  }
61 
62  // Cache the normalisation factor.
63  this->calcNorm();
64 }
65 
67 {
68  // Destructor
69 }
70 
72 {
73  // Check that the given abscissa is within the allowed range
74  if ( ! this->checkRange( abscissas ) ) {
75  gSystem->Exit( EXIT_FAILURE );
76  }
77 
78  // Get our abscissa
79  Double_t abscissa = abscissas[0];
80 
81  // Get the up to date parameter values
82  Double_t slope = slope_->unblindValue();
83 
84  // Calculate the value of the straight line for the given value of the abscissa.
85  Double_t constVal = 1.0 / ( this->getMaxAbscissa() - this->getMinAbscissa() );
86  constVal -= slope * ( this->getMaxAbscissa() + this->getMinAbscissa() ) * 0.5;
87 
88  Double_t value = slope * abscissa + constVal;
89 
90  // Make sure the PDF doesn't go negative
91  if ( value < 0.0 ) {
92  if ( posflag_ ) {
93  std::cerr << "WARNING in LauLinearPdf::calcLikelihoodInfo : The PDF is negative, setting to zero"
94  << std::endl;
95  posflag_ = kFALSE;
96  }
97  value = 0.0;
98  }
99 
100  this->setUnNormPDFVal( value );
101 }
102 
104 {
105  // Nothing to calculate here since the PDF is already normalised to 1
106  this->setNorm( 1.0 );
107 }
108 
109 void LauLinearPdf::calcPDFHeight( const LauKinematics* /*kinematics*/ )
110 {
111  if ( this->heightUpToDate() ) {
112  return;
113  }
114 
115  // Get the up to date parameter values
116  Double_t slope = slope_->unblindValue();
117 
118  // Calculate the PDF height for the straight line
119  LauAbscissas maxPoint( 1 );
120  if ( slope > 0.0 ) {
121  maxPoint[0] = this->getMaxAbscissa();
122  } else {
123  maxPoint[0] = this->getMinAbscissa();
124  }
125  this->calcLikelihoodInfo( maxPoint );
126 
127  Double_t height = this->getUnNormLikelihood();
128 
129  this->setMaxHeight( height );
130 }
virtual void calcNorm()
Calculate the normalisation.
virtual Double_t getMaxAbscissa() const
Retrieve the maximum value of the (primary) abscissa.
Definition: LauAbsPdf.hh:141
Double_t value() const
The value of the parameter.
virtual Double_t getMinAbscissa() const
Retrieve the minimum value of the (primary) abscissa.
Definition: LauAbsPdf.hh:135
virtual void calcPDFHeight(const LauKinematics *kinematics)
Calculate the PDF height.
std::vector< Double_t > LauAbscissas
The type used for containing multiple abscissa values.
Definition: LauAbsPdf.hh:58
LauLinearPdf(const TString &theVarName, const std::vector< LauAbsRValue * > &params, Double_t minAbscissa, Double_t maxAbscissa)
Constructor.
Definition: LauLinearPdf.cc:41
virtual LauAbsRValue * findParameter(const TString &parName)
Retrieve the specified parameter.
Definition: LauAbsPdf.cc:431
File containing declaration of LauLinearPdf class.
virtual UInt_t nParameters() const
Retrieve the number of PDF parameters.
Definition: LauAbsPdf.hh:109
virtual void setNorm(Double_t norm)
Set the normalisation factor.
Definition: LauAbsPdf.hh:348
virtual Double_t unblindValue() const =0
The unblinded value of the parameter.
virtual void setUnNormPDFVal(Double_t unNormPDFVal)
Set the unnormalised likelihood.
Definition: LauAbsPdf.hh:394
Class for defining the abstract interface for PDF classes.
Definition: LauAbsPdf.hh:54
File containing LauConstants namespace.
virtual void setMaxHeight(Double_t maxHeight)
Set the maximum height.
Definition: LauAbsPdf.hh:354
Bool_t posflag_
Flag to control printing of warnings about the PDF going negative.
Definition: LauLinearPdf.hh:92
Class for calculating 3-body kinematic quantities.
virtual void calcLikelihoodInfo(const LauAbscissas &abscissas)
Calculate the likelihood (and intermediate info) for a given abscissa.
Definition: LauLinearPdf.cc:71
virtual ~LauLinearPdf()
Destructor.
Definition: LauLinearPdf.cc:66
LauAbsRValue * slope_
Line slope.
Definition: LauLinearPdf.hh:89
virtual Double_t getUnNormLikelihood() const
Retrieve the unnormalised likelihood value.
Definition: LauAbsPdf.hh:218
virtual Bool_t heightUpToDate() const
Check if the maximum height of the PDF is up to date.
Definition: LauAbsPdf.hh:287
virtual Bool_t checkRange(const LauAbscissas &abscissas) const
Check that all abscissas are within their allowed ranges.
Definition: LauAbsPdf.cc:243