LauDPDepCruijffPdf.cc
Go to the documentation of this file.
32 LauDPDepCruijffPdf::LauDPDepCruijffPdf(const TString& theVarName, const std::vector<LauAbsRValue*>& params,
64 cerr<<"ERROR in LauDPDepCruijffPdf::LauDPDepCruijffPdf : Have not been provided with a valid DP kinematics object."<<endl;
78 if ((this->nParameters() != 5) || (mean_ == 0) || (sigmaR_ == 0) || (sigmaL_ == 0) || (alphaL_ == 0) || (alphaR_ == 0)) {
79 cerr<<"ERROR in LauDPDepCruijffPdf constructor: LauDPDepCruijffPdf requires 5 parameters: \"mean\", \"sigmaL\", \"sigmaR\", \"alphaR\" and \"alphaL\"."<<endl;
92 LauDPDepCruijffPdf::LauDPDepCruijffPdf(const LauDPDepCruijffPdf& other) : LauAbsPdf(other.varName(), other.getParameters(), other.getMinAbscissa(), other.getMaxAbscissa()),
173 Double_t normFac = (sumMethod == GaussLegendre) ? this->integrGaussLegendre() : this->integTrapezoid();
256 for (std::vector<Double_t>::const_iterator iter = meanCoeffs_.begin(); iter != meanCoeffs_.end(); ++iter) {
263 for (std::vector<Double_t>::const_iterator iter = sigmaLCoeffs_.begin(); iter != sigmaLCoeffs_.end(); ++iter) {
270 for (std::vector<Double_t>::const_iterator iter = sigmaRCoeffs_.begin(); iter != sigmaRCoeffs_.end(); ++iter) {
277 for (std::vector<Double_t>::const_iterator iter = alphaLCoeffs_.begin(); iter != alphaLCoeffs_.end(); ++iter) {
284 for (std::vector<Double_t>::const_iterator iter = alphaRCoeffs_.begin(); iter != alphaRCoeffs_.end(); ++iter) {
Definition: LauDPDepCruijffPdf.hh:40 virtual Double_t integTrapezoid() Integrate the PDF using the simple trapezoid method. Definition: LauDPDepCruijffPdf.cc:216 Definition: LauDPDepCruijffPdf.hh:42 Double_t calcThirdMassSq(Double_t firstMassSq, Double_t secondMassSq) const Calculate the third invariant mass square from the two provided (e.g. mjkSq from mijSq and mikSq) ... Definition: LauKinematics.cc:432 virtual void setUnNormPDFVal(Double_t unNormPDFVal) Set the unnormalised likelihood. Definition: LauAbsPdf.hh:369 virtual Double_t getMinAbscissa() const Retrieve the minimum value of the (primary) abscissa. Definition: LauAbsPdf.hh:117 Definition: LauDPDepCruijffPdf.hh:44 virtual Bool_t normWeightsDone() const Check whether the normalisation weights have been calculated. Definition: LauAbsPdf.hh:447 ClassImp(LauAbsCoeffSet) const std::vector< Double_t > alphaLCoeffs_ Coefficients of alpha for the left Gaussian. Definition: LauDPDepCruijffPdf.hh:159 Class for defining a Cruijff PDF (with DP dependence). Definition: LauDPDepCruijffPdf.hh:35 virtual LauAbsRValue * findParameter(const TString &parName) Retrieve the specified parameter. Definition: LauAbsPdf.cc:381 Class that defines the particular 3-body decay under study. Definition: LauDaughters.hh:33 virtual const std::vector< LauAbscissas > & normAbscissas() const Retrieve the abscissa points used for normalisation. Definition: LauAbsPdf.hh:462 Double_t currentPDFValue(Double_t abscissa) const Current PDF value. Definition: LauDPDepCruijffPdf.cc:180 virtual Double_t getUnNormLikelihood() const Retrieve the unnormalised likelihood value. Definition: LauAbsPdf.hh:196 File containing declaration of LauDaughters class. void scalePars(Double_t dpPos) Scale parameters by their dependence on the DP position. Definition: LauDPDepCruijffPdf.cc:253 virtual Bool_t checkRange(const LauAbscissas &abscissas) const Check that all abscissas are within their allowed ranges. Definition: LauAbsPdf.cc:213 virtual Int_t nNormPoints() const Retrieve the number of points to integrate over when normalising. Definition: LauAbsPdf.hh:276 Definition: LauDPDepCruijffPdf.hh:41 Double_t distanceFromDPCentre() const Calculate the distance from the currently set (m13Sq, m23Sq) point to the centre of the Dalitz plot (... Definition: LauKinematics.cc:438 File containing declaration of LauKinematics class. virtual TRandom * getRandomFun() const Retrieve the random function used for MC generation. Definition: LauAbsPdf.hh:387 const std::vector< Double_t > sigmaLCoeffs_ Coefficients of sigma for the left Gaussian. Definition: LauDPDepCruijffPdf.hh:155 LauDPDepCruijffPdf(const TString &theVarName, const std::vector< LauAbsRValue * > ¶ms, Double_t minAbscissa, Double_t maxAbscissa, const LauDaughters *daughters, const std::vector< Double_t > &meanCoeffs, const std::vector< Double_t > &sigmaLCoeffs, const std::vector< Double_t > &sigmaRCoeffs, const std::vector< Double_t > &alphaLCoeffs, const std::vector< Double_t > &alphaRCoeffs, DPAxis dpAxis) Constructor. Definition: LauDPDepCruijffPdf.cc:32 Definition: LauAbsPdf.hh:49 Definition: LauDPDepCruijffPdf.hh:45 const std::vector< Double_t > alphaRCoeffs_ Coefficients of alpha for the right Gaussian. Definition: LauDPDepCruijffPdf.hh:161 File containing declaration of LauDPDepCruijffPdf class. virtual Double_t getMaxAbscissa() const Retrieve the maximum value of the (primary) abscissa. Definition: LauAbsPdf.hh:123 const std::vector< Double_t > meanCoeffs_ Coefficients of Gaussian mean. Definition: LauDPDepCruijffPdf.hh:153 virtual const std::vector< Double_t > & normWeights() const Retrieve the weights used for normalisation. Definition: LauAbsPdf.hh:468 virtual Double_t integrGaussLegendre() Integrate the PDF using the Gauss-Legendre method. Definition: LauDPDepCruijffPdf.cc:196 File containing LauConstants namespace. virtual void getNormWeights() Calculate the weights and abscissas used for normalisation. Definition: LauAbsPdf.cc:470 virtual void calcPDFHeight(const LauKinematics *kinematics) Calculate the PDF height. Definition: LauDPDepCruijffPdf.cc:291 const std::vector< Double_t > sigmaRCoeffs_ Coefficients of sigma for the right Gaussian. Definition: LauDPDepCruijffPdf.hh:157 virtual IntMethod integMethod() const Retrieve the integration method used to normalise the PDF. Definition: LauAbsPdf.hh:288 virtual void calcLikelihoodInfo(const LauAbscissas &abscissas) Calculate the likelihood (and intermediate info) for a given abscissa. Definition: LauDPDepCruijffPdf.cc:126 virtual Double_t getRange() const Retrieve the range of the (primary) abscissa. Definition: LauAbsPdf.hh:129 virtual void setRandomFun(TRandom *randomFun) Set the random function used for toy MC generation. Definition: LauAbsPdf.hh:233 Pure abstract base class for defining a parameter containing an R value. Definition: LauAbsRValue.hh:29 std::vector< Double_t > LauAbscissas The type used for containing multiple abscissa values. Definition: LauAbsPdf.hh:45 Generated by 1.8.5 |