laura is hosted by Hepforge, IPPP Durham
Laura++  v2r1
A maximum likelihood fitting package for performing Dalitz-plot analysis.
LauKappaRes.cc
Go to the documentation of this file.
1 
2 // Copyright University of Warwick 2004 - 2013.
3 // Distributed under the Boost Software License, Version 1.0.
4 // (See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
5 
6 // Authors:
7 // Thomas Latham
8 // John Back
9 // Paul Harrison
10 
15 #include <iostream>
16 
17 #include "LauConstants.hh"
18 #include "LauKappaRes.hh"
19 
21 
22 
23 LauKappaRes::LauKappaRes(TString resName, Double_t resMass, Double_t resWidth, Int_t resSpin,
24  Int_t resCharge, Int_t resPairAmpInt, const LauDaughters* daughters) :
25  LauAbsResonance(resName, resMass, resWidth, resSpin, resCharge, resPairAmpInt, daughters),
26  mSum_(0.0),
27  mSumSq_(0.0),
28  sAdler_(0.0),
29  b1_(0.0),
30  b2_(0.0),
31  A_(0.0),
32  m0_(0.0),
33  m0Sq_(0.0),
34  denom_(0.0)
35 {
36  // Initialise various constants
38  mSumSq_ = mSum_*mSum_;
39  sAdler_ = LauConstants::mKSq - LauConstants::mPiSq*0.5; // Adler zero at (mK)^2 - 0.5*(mpi)^2
40 
41  // Default constant factors from BES data
42  Double_t b1 = 24.49;
43  Double_t b2 = 0.0;
44  Double_t A = 2.5;
45  Double_t m0 = 3.3;
46  this->setConstants( b1, b2, A, m0 );
47 }
48 
50 {
51 }
52 
54 {
55  this->checkDaughterTypes();
56 
57  Double_t resSpin = this->getSpin();
58  if (resSpin != 0) {
59  std::cerr << "ERROR in LauKappaRes : spin = " << resSpin << " is not zero!" << std::endl;
60  }
61 }
62 
63 void LauKappaRes::setConstants(Double_t b1, Double_t b2, Double_t A, Double_t m0) {
64  b1_ = b1;
65  b2_ = b2;
66  A_ = A;
67  m0_ = m0;
68  m0Sq_ = m0_*m0_;
69  denom_ = m0Sq_ - sAdler_;
70 }
71 
73 {
74  // Check that the daughter tracks are K and pi. Otherwise issue a warning.
75  Int_t resPairAmpInt = this->getPairInt();
76  if (resPairAmpInt < 1 || resPairAmpInt > 3) {
77  std::cerr << "WARNING in LauKappaRes::checkDaughterTypes : resPairAmpInt = " << resPairAmpInt << " is out of the range [1,2,3]." << std::endl;
78  return;
79  }
80 
81  // Check that daughter types agree
82  const TString& nameDaug1 = this->getNameDaug1();
83  const TString& nameDaug2 = this->getNameDaug2();
84  if ( !( nameDaug1.Contains("pi", TString::kIgnoreCase) && nameDaug2.Contains("k", TString::kIgnoreCase) ) ) {
85  if ( !( nameDaug2.Contains("pi", TString::kIgnoreCase) && nameDaug1.Contains("k", TString::kIgnoreCase) ) ) {
86  std::cerr << "ERROR in LauKappaRes::checkDaughterTypes : Kappa model is using daughters \"" << nameDaug1 << "\" and \"" << nameDaug2 << "\" that are not a kaon and a pion." << std::endl;
87  }
88  }
89 }
90 
91 LauComplex LauKappaRes::resAmp(Double_t mass, Double_t spinTerm)
92 {
93  // This function returns the complex dynamical amplitude for a Kappa distribution
94  // given the invariant mass and cos(helicity) values.
95 
96  // First check that the appropriate daughters are either pi+pi- or K+K-
97  // Check that the daughter tracks are the same type. Otherwise issue a warning
98  // and set the type to be pion for the Kappa distribution. Returns the
99  // integer defined by the enum LauKappaRes::KappaPartType.
100 
101  Double_t s = mass*mass; // Invariant mass squared combination for the system
102  Double_t rho(0.0); // Phase-space factor
103  if (s > mSumSq_) {rho = TMath::Sqrt(1.0 - mSumSq_/s);}
104 
105  Double_t f = b2_*s + b1_; // f(s) function
106  Double_t numerator = s - sAdler_;
107  Double_t gamma(0.0);
108  if (TMath::Abs(denom_) > 1e-10 && TMath::Abs(A_) > 1e-10) {
109  // Decay width of the system
110  gamma = rho*(numerator/denom_)*f*TMath::Exp(-(s - m0Sq_)/A_);
111  }
112 
113  // Now form the complex amplitude - use relativistic BW form (without barrier factors)
114  // Note that the M factor in the denominator is not the "pole" at ~500 MeV, but is
115  // m0_ = 0.9264, the mass when the phase shift goes through 90 degrees.
116 
117  Double_t dMSq = m0Sq_ - s;
118  Double_t widthTerm = gamma*m0_;
119  LauComplex resAmplitude(dMSq, widthTerm);
120 
121  Double_t denomFactor = dMSq*dMSq + widthTerm*widthTerm;
122 
123  Double_t invDenomFactor = 0.0;
124  if (denomFactor > 1e-10) {invDenomFactor = 1.0/denomFactor;}
125 
126  resAmplitude.rescale(spinTerm*invDenomFactor);
127 
128  return resAmplitude;
129 
130 }
131 
Double_t m0Sq_
Square of m0.
Definition: LauKappaRes.hh:97
ClassImp(LauAbsCoeffSet)
Class that defines the particular 3-body decay under study.
Definition: LauDaughters.hh:33
TString getNameDaug2() const
Get the name of the second daughter of the resonance.
virtual LauComplex resAmp(Double_t mass, Double_t spinTerm)
Complex resonant amplitude.
Definition: LauKappaRes.cc:91
Double_t sAdler_
Defined as mK*mK - 0.5*mPi*mPi.
Definition: LauKappaRes.hh:87
Int_t getPairInt() const
Get the integer to identify which DP axis the resonance belongs to.
const Double_t mPi
Mass of pi+- (GeV/c^2)
Definition: LauConstants.hh:40
Double_t A_
Factor from BES data.
Definition: LauKappaRes.hh:93
virtual void initialise()
Initialise the model.
Definition: LauKappaRes.cc:53
Class for defining the Kappa resonance model.
Definition: LauKappaRes.hh:32
const Double_t mPiSq
Square of pi+- mass.
Definition: LauConstants.hh:65
Double_t b1_
Factor from BES data.
Definition: LauKappaRes.hh:89
Double_t mSumSq_
Square of mSum.
Definition: LauKappaRes.hh:85
void checkDaughterTypes() const
Check that Kappa daughters are K and pi.
Definition: LauKappaRes.cc:72
Double_t b2_
Factor from BES data.
Definition: LauKappaRes.hh:91
Abstract class for defining type for resonance amplitude models (Breit-Wigner, Flatte etc...
void rescale(Double_t scaleVal)
Scale this by a factor.
Definition: LauComplex.hh:282
File containing LauConstants namespace.
Double_t denom_
Defined as m0Sq - sAdler.
Definition: LauKappaRes.hh:99
Class for defining a complex number.
Definition: LauComplex.hh:47
TString getNameDaug1() const
Get the name of the first daughter of the resonance.
void setConstants(Double_t b1, Double_t b2, Double_t A, Double_t m0)
Set the parameter values.
Definition: LauKappaRes.cc:63
Int_t getSpin() const
Get the spin of the resonance.
Double_t m0_
Factor from BES data.
Definition: LauKappaRes.hh:95
virtual ~LauKappaRes()
Destructor.
Definition: LauKappaRes.cc:49
const Double_t mK
Mass of K+- (GeV/c^2)
Definition: LauConstants.hh:44
File containing declaration of LauKappaRes class.
const Double_t mKSq
Square of K+- mass.
Definition: LauConstants.hh:69