laura is hosted by Hepforge, IPPP Durham
Laura++  v3r2
A maximum likelihood fitting package for performing Dalitz-plot analysis.

Class for defining an Exponential PDF. More...

#include <LauExponentialPdf.hh>

Inheritance diagram for LauExponentialPdf:
LauAbsPdf

Public Member Functions

 LauExponentialPdf (const TString &theVarName, const std::vector< LauAbsRValue * > &params, Double_t minAbscissa, Double_t maxAbscissa)
 Constructor. More...
 
virtual ~LauExponentialPdf ()
 Destructor. More...
 
virtual void calcLikelihoodInfo (const LauAbscissas &abscissas)
 Calculate the likelihood (and intermediate info) for a given abscissa. More...
 
virtual void calcNorm ()
 Calculate the normalisation. More...
 
virtual void calcPDFHeight (const LauKinematics *kinematics)
 Calculate the PDF height. More...
 
- Public Member Functions inherited from LauAbsPdf
 LauAbsPdf (const TString &theVarName, const std::vector< LauAbsRValue * > &params, Double_t minAbscissa, Double_t maxAbscissa)
 Constructor for a 1D PDF. More...
 
 LauAbsPdf (const std::vector< TString > &theVarNames, const std::vector< LauAbsRValue * > &params, const LauFitData &minAbscissas, const LauFitData &maxAbscissas)
 Constructor for a multidimensional PDF. More...
 
virtual ~LauAbsPdf ()
 Destructor. More...
 
virtual const TString & varName () const
 Retrieve the name of the abscissa. More...
 
virtual std::vector< TString > varNames () const
 Retrieve the names of the abscissas. More...
 
virtual UInt_t nParameters () const
 Retrieve the number of PDF parameters. More...
 
virtual UInt_t nFixedParameters () const
 Retrieve the number of fixed PDF parameters. More...
 
virtual UInt_t nInputVars () const
 Retrieve the number of abscissas. More...
 
virtual Bool_t isDPDependent () const
 Specifies whether or not the PDF is DP dependent. More...
 
virtual Double_t getMinAbscissa () const
 Retrieve the minimum value of the (primary) abscissa. More...
 
virtual Double_t getMaxAbscissa () const
 Retrieve the maximum value of the (primary) abscissa. More...
 
virtual Double_t getRange () const
 Retrieve the range of the (primary) abscissa. More...
 
virtual Double_t getMinAbscissa (const TString &theVarName) const
 Retrieve the minimum value of the specified abscissa. More...
 
virtual Double_t getMaxAbscissa (const TString &theVarName) const
 Retrieve the maximum value of the specified abscissa. More...
 
virtual Double_t getRange (const TString &theVarName) const
 Retrieve the range of the specified abscissa. More...
 
virtual LauFitData getMinAbscissas () const
 Retrieve the minimum values of all the abscissas. More...
 
virtual LauFitData getMaxAbscissas () const
 Retrieve the maximum values of all the abscissas. More...
 
virtual LauFitData getRanges () const
 Retrieve the ranges of all the abscissas. More...
 
virtual void updatePulls ()
 Update the pulls for all parameters. More...
 
virtual void cacheInfo (const LauFitDataTree &inputData)
 Cache information from data. More...
 
virtual void calcLikelihoodInfo (UInt_t iEvt)
 Retrieve the likelihood (and all associated information) given the event number. More...
 
virtual Double_t getUnNormLikelihood () const
 Retrieve the unnormalised likelihood value. More...
 
virtual Double_t getNorm () const
 Retrieve the normalisation factor. More...
 
virtual Double_t getLikelihood () const
 Retrieve the normalised likelihood value. More...
 
virtual Double_t getLikelihood (const TString &theVarName) const
 For multidimentional PDFs, retrieve the normalised likelihood value of a named variable. More...
 
virtual Double_t getMaxHeight () const
 Retrieve the maximum height. More...
 
virtual LauFitData generate (const LauKinematics *kinematics)
 Generate an event from the PDF. More...
 
virtual void setRandomFun (TRandom *randomFun)
 Set the random function used for toy MC generation. More...
 
virtual const std::vector
< LauAbsRValue * > & 
getParameters () const
 Retrieve the parameters of the PDF, e.g. so that they can be loaded into a fit. More...
 
virtual std::vector
< LauAbsRValue * > & 
getParameters ()
 Retrieve the parameters of the PDF, e.g. so that they can be loaded into a fit. More...
 
virtual Bool_t heightUpToDate () const
 Check if the maximum height of the PDF is up to date. More...
 
virtual void heightUpToDate (Bool_t hutd)
 Set whether the height is up to date. More...
 
virtual Bool_t cachePDF () const
 Check if the PDF is to be cached. More...
 
virtual Int_t nNormPoints () const
 Retrieve the number of points to integrate over when normalising. More...
 
virtual void nNormPoints (Int_t nPoints)
 Set the number of points to integrate over when normalising. More...
 
virtual IntMethod integMethod () const
 Retrieve the integration method used to normalise the PDF. More...
 
virtual void integMethod (IntMethod method)
 Set the integration method used to normalise the PDF. More...
 

Private Member Functions

 LauExponentialPdf (const LauExponentialPdf &rhs)
 Copy constructor (not implemented) More...
 
LauExponentialPdfoperator= (const LauExponentialPdf &rhs)
 Copy assignment operator (not implemented) More...
 

Private Attributes

LauAbsRValueslope_
 Exponential slope ie exp(slope*x) More...
 

Additional Inherited Members

- Public Types inherited from LauAbsPdf
enum  IntMethod { GaussLegendre, Trapezoid }
 The possible numerical intergration methods. More...
 
typedef std::vector< Double_t > LauAbscissas
 The type used for containing multiple abscissa values. More...
 
- Protected Member Functions inherited from LauAbsPdf
virtual void cachePDF (Bool_t doCachePDF)
 Set whether the PDF is to be cached. More...
 
virtual Double_t integrGaussLegendre ()
 Integrate the PDF using the Gauss-Legendre method. More...
 
virtual Double_t integTrapezoid ()
 Integrate the PDF using the simple trapezoid method. More...
 
virtual void setNorm (Double_t norm)
 Set the normalisation factor. More...
 
virtual void setMaxHeight (Double_t maxHeight)
 Set the maximum height. More...
 
virtual void setMinAbscissa (const TString &theVarName, Double_t minAbscissa)
 Set the minimum value of the specified abscissa. More...
 
virtual void setMaxAbscissa (const TString &theVarName, Double_t maxAbscissa)
 Set the maximum value of the specified abscissa. More...
 
virtual void setRange (const TString &theVarName, Double_t minAbscissa, Double_t maxAbscissa)
 Set the range of the specified abscissa. More...
 
virtual Bool_t checkRange (const LauAbscissas &abscissas) const
 Check that all abscissas are within their allowed ranges. More...
 
virtual void setUnNormPDFVal (Double_t unNormPDFVal)
 Set the unnormalised likelihood. More...
 
virtual LauAbsRValuefindParameter (const TString &parName)
 Retrieve the specified parameter. More...
 
virtual const LauAbsRValuefindParameter (const TString &parName) const
 Retrieve the specified parameter. More...
 
virtual TRandom * getRandomFun () const
 Retrieve the random function used for MC generation. More...
 
virtual std::vector
< LauAbscissas > & 
getAbscissas ()
 Retrieve the abscissa(s) More...
 
virtual const std::vector
< LauAbscissas > & 
getAbscissas () const
 Retrieve the abscissa(s) More...
 
virtual std::vector< Double_t > & getUnNormPDFValues ()
 Retrieve the cached unnormalised likelihood values. More...
 
virtual const std::vector
< Double_t > & 
getUnNormPDFValues () const
 Retrieve the cached unnormalised likelihood values. More...
 
virtual void addParameters (std::vector< LauAbsRValue * > &params)
 Add parameters to the PDF. More...
 
virtual Bool_t withinNormCalc () const
 Check whether the calcNorm method is running. More...
 
virtual void withinNormCalc (Bool_t yorn)
 Set flag to track whether the calcNorm method is running. More...
 
virtual Bool_t withinGeneration () const
 Check whether the generate method is running. More...
 
virtual void withinGeneration (Bool_t yorn)
 Set flag to track whether the generate method is running. More...
 
virtual Bool_t normWeightsDone () const
 Check whether the normalisation weights have been calculated. More...
 
virtual void normWeightsDone (Bool_t yorn)
 Set whether the normalisation weights have been calculated. More...
 
virtual void getNormWeights ()
 Calculate the weights and abscissas used for normalisation. More...
 
virtual const std::vector
< LauAbscissas > & 
normAbscissas () const
 Retrieve the abscissa points used for normalisation. More...
 
virtual const std::vector
< Double_t > & 
normWeights () const
 Retrieve the weights used for normalisation. More...
 

Detailed Description

Class for defining an Exponential PDF.

Class that allows the user to define an Exponential PDF, requires a single parameter for the slope of the exponential: exp(slope*x)

Definition at line 35 of file LauExponentialPdf.hh.

Constructor & Destructor Documentation

LauExponentialPdf::LauExponentialPdf ( const TString &  theVarName,
const std::vector< LauAbsRValue * > &  params,
Double_t  minAbscissa,
Double_t  maxAbscissa 
)

Constructor.

Parameters
[in]theVarNamethe name of the abscissa variable
[in]paramsthe PDF parameters - slope
[in]minAbscissathe minimum value of the abscissa
[in]maxAbscissathe maximum value of the abscissa
LauExponentialPdf::~LauExponentialPdf ( )
virtual

Destructor.

Definition at line 52 of file LauExponentialPdf.cc.

LauExponentialPdf::LauExponentialPdf ( const LauExponentialPdf rhs)
private

Copy constructor (not implemented)

Member Function Documentation

void LauExponentialPdf::calcLikelihoodInfo ( const LauAbscissas abscissas)
virtual

Calculate the likelihood (and intermediate info) for a given abscissa.

Parameters
[in]abscissasthe values of the abscissa(s)

Implements LauAbsPdf.

Definition at line 57 of file LauExponentialPdf.cc.

void LauExponentialPdf::calcNorm ( )
virtual

Calculate the normalisation.

Reimplemented from LauAbsPdf.

Definition at line 88 of file LauExponentialPdf.cc.

void LauExponentialPdf::calcPDFHeight ( const LauKinematics kinematics)
virtual

Calculate the PDF height.

Parameters
[in]kinematicsthe current DP kinematics

Implements LauAbsPdf.

Definition at line 103 of file LauExponentialPdf.cc.

LauExponentialPdf& LauExponentialPdf::operator= ( const LauExponentialPdf rhs)
private

Copy assignment operator (not implemented)

Member Data Documentation

LauAbsRValue* LauExponentialPdf::slope_
private

Exponential slope ie exp(slope*x)

Definition at line 77 of file LauExponentialPdf.hh.


The documentation for this class was generated from the following files: