Lau1DCubicSpline.cc
Go to the documentation of this file.
153 std::cout << "ERROR in Lau1DCubicSpline::init : The number of y-values given does not match the number of x-values"
192 // this is solved using the tridiagonal matrix algorithm as on en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm
313 // method assumes that the additional points follow a quadratic defined by the last three points
314 // this leads to the relations a[2] - a[1] = a[1] - a[0] = a[0] - a[-1] and a[n-1] - a[n-2] = a[n] - a[n-1] = a[n+1] - a[n]
342 // dy/dx_i = ( | a_i+2 - a_i+1 | a_i + | a_i - a_i-1 | a_i+1 ) / ( | a_i+2 - a_i+1 | + | a_i - a_i-1 | )
void calcDerivativesStandard() Calculate the first derivatives according to the standard method. Definition: Lau1DCubicSpline.cc:185 Double_t dydxn_ The gradient at the right boundary for a clamped spline. Definition: Lau1DCubicSpline.hh:204 Double_t dydx0_ The gradient at the left boundary for a clamped spline. Definition: Lau1DCubicSpline.hh:202 std::vector< Double_t > c_ The 'c' coefficients used to determine the derivatives. Definition: Lau1DCubicSpline.hh:189 void calcDerivatives() Calculate the first derivative at each knot. Definition: Lau1DCubicSpline.cc:170 void updateBoundaryConditions(LauSplineBoundaryType leftBound, LauSplineBoundaryType rightBound, Double_t dydx0=0.0, Double_t dydxn=0.0) Update the boundary conditions for the spline. Definition: Lau1DCubicSpline.cc:120 void calcDerivativesAkima() Calculate the first derivatives according to the Akima method. Definition: Lau1DCubicSpline.cc:297 void updateType(LauSplineType type) Update the type of interpolation to perform. Definition: Lau1DCubicSpline.cc:112 std::vector< Double_t > a_ The 'a' coefficients used to determine the derivatives. Definition: Lau1DCubicSpline.hh:185 void updateYValues(const std::vector< Double_t > &ys) Update the y-values of the knots. Definition: Lau1DCubicSpline.cc:106 LauSplineBoundaryType leftBound_ The left-hand boundary condition on the spline. Definition: Lau1DCubicSpline.hh:197 File containing declaration of Lau1DCubicSpline class. std::vector< Double_t > b_ The 'b' coefficients used to determine the derivatives. Definition: Lau1DCubicSpline.hh:187 Lau1DCubicSpline(const std::vector< Double_t > &xs, const std::vector< Double_t > &ys, LauSplineType type=Lau1DCubicSpline::StandardSpline, LauSplineBoundaryType leftBound=Lau1DCubicSpline::NotAKnot, LauSplineBoundaryType rightBound=Lau1DCubicSpline::NotAKnot, Double_t dydx0=0.0, Double_t dydxn=0.0) Constructor. Definition: Lau1DCubicSpline.cc:38 LauSplineBoundaryType rightBound_ The right-hand boundary condition on the spline. Definition: Lau1DCubicSpline.hh:199 Double_t evaluate(Double_t x) const Evaluate the function at given point. Definition: Lau1DCubicSpline.cc:61 std::vector< Double_t > d_ The 'd' coefficients used to determine the derivatives. Definition: Lau1DCubicSpline.hh:191 Generated by ![]() |