laura is hosted by Hepforge, IPPP Durham
Laura++  3.6.0
A maximum likelihood fitting package for performing Dalitz-plot analysis.
Lau1DCubicSpline.hh
Go to the documentation of this file.
1 
2 /*
3 Copyright 2015 University of Warwick
4 
5 Licensed under the Apache License, Version 2.0 (the "License");
6 you may not use this file except in compliance with the License.
7 You may obtain a copy of the License at
8 
9  http://www.apache.org/licenses/LICENSE-2.0
10 
11 Unless required by applicable law or agreed to in writing, software
12 distributed under the License is distributed on an "AS IS" BASIS,
13 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 See the License for the specific language governing permissions and
15 limitations under the License.
16 */
17 
18 /*
19 Laura++ package authors:
20 John Back
21 Paul Harrison
22 Thomas Latham
23 */
24 
77 #ifndef LAU_1DCUBICSPLINE
78 #define LAU_1DCUBICSPLINE
79 
80 #include "Rtypes.h"
81 
82 #include <vector>
83 
85 
86  public:
92  };
93 
95 
101  NotAKnot
102  };
103 
105 
114  Lau1DCubicSpline( const std::vector<Double_t>& xs,
115  const std::vector<Double_t>& ys,
119  Double_t dydx0 = 0.0,
120  Double_t dydxn = 0.0 );
121 
123  virtual ~Lau1DCubicSpline();
124 
126 
130  Double_t evaluate( Double_t x ) const;
131 
133 
136  void updateYValues( const std::vector<Double_t>& ys );
137 
139 
142  void updateType( LauSplineType type );
143 
145 
152  LauSplineBoundaryType rightBound,
153  Double_t dydx0 = 0.0,
154  Double_t dydxn = 0.0 );
155 
156  private:
159 
162 
164  void init();
165 
167  void calcDerivatives();
168 
172  void calcDerivativesAkima();
173 
175  const UInt_t nKnots_;
176 
178  std::vector<Double_t> x_;
180  std::vector<Double_t> y_;
182  std::vector<Double_t> dydx_;
183 
185  std::vector<Double_t> a_;
187  std::vector<Double_t> b_;
189  std::vector<Double_t> c_;
191  std::vector<Double_t> d_;
192 
195 
200 
202  Double_t dydx0_;
204  Double_t dydxn_;
205 
206  ClassDef( Lau1DCubicSpline, 0 ); // Class for defining a 1D cubic spline
207 };
208 
209 #endif
void calcDerivativesStandard()
Calculate the first derivatives according to the standard method.
Double_t dydxn_
The gradient at the right boundary for a clamped spline.
void init()
Initialise the class.
Double_t dydx0_
The gradient at the left boundary for a clamped spline.
std::vector< Double_t > y_
The y-value at each knot.
std::vector< Double_t > c_
The 'c' coefficients used to determine the derivatives.
void calcDerivatives()
Calculate the first derivative at each knot.
void updateBoundaryConditions(LauSplineBoundaryType leftBound, LauSplineBoundaryType rightBound, Double_t dydx0=0.0, Double_t dydxn=0.0)
Update the boundary conditions for the spline.
void calcDerivativesAkima()
Calculate the first derivatives according to the Akima method.
void updateType(LauSplineType type)
Update the type of interpolation to perform.
Lau1DCubicSpline & operator=(const Lau1DCubicSpline &rhs)
Copy assignment operator - not implemented.
const UInt_t nKnots_
The number of knots in the spline.
std::vector< Double_t > a_
The 'a' coefficients used to determine the derivatives.
void updateYValues(const std::vector< Double_t > &ys)
Update the y-values of the knots.
Class for defining a 1D cubic spline based on a set of knots.
LauSplineBoundaryType leftBound_
The left-hand boundary condition on the spline.
LauSplineType
Define the allowed interpolation types.
std::vector< Double_t > x_
The x-value at each knot.
LauSplineType type_
The type of interpolation to be performed.
std::vector< Double_t > b_
The 'b' coefficients used to determine the derivatives.
Lau1DCubicSpline(const std::vector< Double_t > &xs, const std::vector< Double_t > &ys, LauSplineType type=Lau1DCubicSpline::StandardSpline, LauSplineBoundaryType leftBound=Lau1DCubicSpline::NotAKnot, LauSplineBoundaryType rightBound=Lau1DCubicSpline::NotAKnot, Double_t dydx0=0.0, Double_t dydxn=0.0)
Constructor.
LauSplineBoundaryType
Define the allowed boundary condition types.
LauSplineBoundaryType rightBound_
The right-hand boundary condition on the spline.
virtual ~Lau1DCubicSpline()
Destructor.
Double_t evaluate(Double_t x) const
Evaluate the function at given point.
std::vector< Double_t > dydx_
The first derivative at each knot.
std::vector< Double_t > d_
The 'd' coefficients used to determine the derivatives.
Lau1DCubicSpline(const Lau1DCubicSpline &rhs)
Copy constructor - not implemented.