|
Laura++
3.6.0
A maximum likelihood fitting package for performing Dalitz-plot analysis.
|
Go to the documentation of this file.
67 inputFileName_( inputFileName ),
80 chiSqSignedHisto_( 0 ),
97 std::cout << "Running chi-squared algorithm" << std::endl;
100 std::cout << "Calculating chi-squared" << std::endl;
107 std::cout << "Writing out histogram output" << std::endl;
109 TFile* outFile = new TFile( "checkHistos.root", "recreate" );
111 histo1_->SetDirectory( outFile );
112 histo2_->SetDirectory( outFile );
120 std::cout << "Done" << std::endl;
125 Float_t toyVal( 0. ), dataVal( 0. );
126 Int_t minContent( 0 ), ndof( 0 );
127 Float_t diff( 0. ), chiSq( 0. ), totalChiSq( 0. );
129 minContent = histo1_->GetBinContent( 1 );
131 for ( Int_t i = 1; i <= histo1_->GetNumberOfBins(); ++i ) {
133 if ( histo1_->GetBinContent( i ) < minContent ) {
134 minContent = histo1_->GetBinContent( i );
140 toyVal = histo2_->GetBinContent( i );
141 dataVal = histo1_->GetBinContent( i );
142 diff = dataVal - toyVal;
144 chiSq = ( diff * diff ) / toyVal;
151 pullHisto_->SetBinContent( i, sqrt( chiSq ) );
154 pullHisto_->SetBinContent( i, -sqrt( chiSq ) );
160 std::cout << "Total ChiSq/nDof = " << totalChiSq << "/" << ndof << " = " << totalChiSq / ndof
162 std::cout << "Actual minimum entries per bin: " << minContent << std::endl;
167 gStyle->SetPalette( 1, 0 );
168 const Int_t NRGBs = 5;
169 const Int_t NCont = 255;
170 Double_t stops[NRGBs] = { 0.00, 0.34, 0.61, 0.84, 1.00 };
171 Double_t red[NRGBs] = { 0.00, 0.00, 0.87, 1.00, 0.51 };
172 Double_t green[NRGBs] = { 0.00, 0.81, 1.00, 0.20, 0.00 };
173 Double_t blue[NRGBs] = { 0.51, 1.00, 0.12, 0.00, 0.00 };
174 TColor::CreateGradientColorTable( NRGBs, stops, red, green, blue, NCont );
175 gStyle->SetNumberContours( NCont );
176 gStyle->SetOptStat( 0000 );
180 can.SetTopMargin( 0.05 );
181 can.SetRightMargin( 0.17 );
182 can.SetBottomMargin( 0.16 );
183 can.SetLeftMargin( 0.14 );
185 histo1_->SetLabelFont( 62, "x" );
186 histo1_->SetLabelFont( 62, "y" );
187 histo1_->SetTitleFont( 62, "x" );
188 histo1_->SetTitleFont( 62, "y" );
189 histo1_->SetTitleSize( 0.06, "x" );
190 histo1_->SetTitleSize( 0.06, "y" );
191 histo1_->SetLabelSize( 0.05, "x" );
192 histo1_->SetLabelSize( 0.05, "y" );
196 can.SaveAs( "data.pdf" );
198 histo2_->SetLabelFont( 62, "x" );
199 histo2_->SetLabelFont( 62, "y" );
200 histo2_->SetTitleFont( 62, "x" );
201 histo2_->SetTitleFont( 62, "y" );
202 histo2_->SetTitleSize( 0.06, "x" );
203 histo2_->SetTitleSize( 0.06, "y" );
204 histo2_->SetLabelSize( 0.05, "x" );
205 histo2_->SetLabelSize( 0.05, "y" );
209 can.SaveAs( "toy.pdf" );
227 can.SaveAs( "pull.pdf" );
240 can.SaveAs( "chiSq.pdf" );
253 can.SaveAs( "chiSqSigned.pdf" );
267 if ( ! getData.good() ) {
268 std::cerr << "Error. Could not read first line of the input file " << inputFileName_
270 gSystem->Exit( EXIT_FAILURE );
274 TFile* file1 = TFile::Open( fileName1_.Data(), "read" );
277 gSystem->Exit( EXIT_FAILURE );
281 TTree* tree1 = dynamic_cast<TTree* >( file1->Get( treeName1_.Data() ) );
284 std::cerr << "Error. Could not find the tree " << treeName1_ << " in the file "
286 gSystem->Exit( EXIT_FAILURE );
291 if ( ! getData.good() ) {
292 std::cerr << "Error. Could not read the second line of the input file " << inputFileName_
294 gSystem->Exit( EXIT_FAILURE );
302 tree2 = dynamic_cast<TTree* >( file1->Get( treeName2_.Data() ) );
306 file2 = TFile::Open( fileName2_.Data(), "read" );
309 gSystem->Exit( EXIT_FAILURE );
312 tree2 = dynamic_cast<TTree* >( file2->Get( treeName2_.Data() ) );
316 std::cerr << "Error. Could not find the tree " << treeName2_ << " in the file "
318 gSystem->Exit( EXIT_FAILURE );
322 Int_t nParameters( 0 );
323 Float_t minContent( 0.0 ), scaleFactor( 1.0 ), xMin( 0.0 ), xMax( 1.0 ), yMin( 0.0 ), yMax( 1.0 );
324 getData >> minContent >> nParameters >> scaleFactor >> xMin >> xMax >> yMin >> yMax;
325 if ( getData.good() ) {
340 std::cout << "Relative scaling factor histo1/histo2 set to " << scaleFactor_ << std::endl;
341 std::cout << "Minimum bin content is " << minContent_ << std::endl;
342 std::cout << "Number of free parameters is " << nParams_ << std::endl;
347 tree1->SetBranchAddress( xName1_.Data(), &x );
348 tree1->SetBranchAddress( yName1_.Data(), &y );
350 Int_t nEntries = tree1->GetEntries();
352 Double_t* xs = new Double_t[nEntries];
353 Double_t* ys = new Double_t[nEntries];
355 for ( Int_t i = 0; i < nEntries; ++i ) {
356 tree1->GetEntry( i );
364 std::vector<Int_t> divisions;
379 TString drawString1, drawString2, weightString2;
383 drawString1 += ">>histo1_";
387 drawString2 += ">>histo2_";
390 tree1->Draw( drawString1 );
391 tree2->Draw( drawString2, weightString2 );
412 const Int_t nEntries,
413 std::vector<Int_t>& divisions )
417 for ( Int_t i = 0; i < nEntries; ++i ) {
426 std::cout << "Target is " << minContent_ << " entries per bin" << std::endl;
427 std::cout << "Aiming to divide " << nIn << " entries between " << nBinsTarget << " bins"
432 Int_t nDivisions( 0 ), nNines( 0 ), nTwentyFives( 0 ), nFortyNines( 0 ), nEleventyElevens( 0 ),
434 Int_t nDivisionsBest( 0 ), nNinesBest( 0 ), nTwentyFivesBest( 0 ), nFortyNinesBest( 0 ),
435 nEleventyElevensBest( 0 ), nBinsBest( 1 );
439 for ( nNines = 0; nNines <= nDivisions; ++nNines ) {
440 for ( nTwentyFives = 0; nTwentyFives <= nDivisions - nNines; ++nTwentyFives ) {
441 for ( nFortyNines = 0; nFortyNines <= nDivisions - nNines - nTwentyFives;
443 for ( nEleventyElevens = 0;
444 nEleventyElevens <= nDivisions - nNines - nTwentyFives - nFortyNines;
445 ++nEleventyElevens ) {
446 nBins = TMath::Power( 4,
447 nDivisions - nNines - nTwentyFives - nFortyNines -
449 TMath::Power( 9, nNines ) * TMath::Power( 25, nTwentyFives ) *
450 TMath::Power( 49, nFortyNines ) *
451 TMath::Power( 121, nEleventyElevens );
452 if ( nBins < nBinsTarget && nBins > nBinsBest ) {
455 nDivisionsBest = nDivisions;
457 nTwentyFivesBest = nTwentyFives;
458 nFortyNinesBest = nFortyNines;
459 nEleventyElevensBest = nEleventyElevens;
465 } while ( TMath::Power( 4, nDivisions + 1 ) <
468 std::cout << "Using " << nBinsBest << " bins" << std::endl;
471 for ( Int_t i = 0; i < nEleventyElevensBest; ++i ) {
472 divisions.push_back( 11 );
474 for ( Int_t i = 0; i < nFortyNinesBest; ++i ) {
475 divisions.push_back( 7 );
477 for ( Int_t i = 0; i < nTwentyFivesBest; ++i ) {
478 divisions.push_back( 5 );
480 for ( Int_t i = 0; i < nNinesBest; ++i ) {
481 divisions.push_back( 3 );
483 for ( Int_t i = 0; i < nDivisionsBest - nNinesBest - nTwentyFivesBest - nFortyNinesBest -
484 nEleventyElevensBest;
486 divisions.push_back( 2 );
496 const Int_t nEntries,
497 const std::vector<Int_t>& divisions,
502 if ( iter == divisions.size() ) {
503 Double_t* x_new = new Double_t[5];
504 Double_t* y_new = new Double_t[5];
517 std::cout << "Adding bin from (" << xMin << "," << yMin << ") to (" << xMax << ","
518 << yMax << ")" << std::endl;
523 Int_t n_divx = divisions[iter];
524 Int_t n_divy = divisions[iter];
527 std::cout << "Dividing bin from (" << xMin << "," << yMin << ") to (" << xMax << "," << yMax
528 << ") into " << n_divx << " by " << n_divy << " subbins" << std::endl;
530 Double_t* xIn = new Double_t[nEntries];
531 Double_t* yIn = new Double_t[nEntries];
532 Int_t* xIndex = new Int_t[nEntries + 2];
533 Int_t* yIndex = new Int_t[nEntries + 2];
536 for ( Int_t i = 0; i < nEntries; ++i ) {
537 if ( ( xs[i] < xMin ) || ( xs[i] > xMax ) || ( ys[i] < yMin ) || ( ys[i] > yMax ) )
539 xIn[xCountIn] = xs[i];
544 Double_t xLimits[n_divx + 1];
545 Double_t yLimits[n_divx][n_divy + 1];
548 TMath::Sort( xCountIn, xIn, xIndex, false );
551 xLimits[n_divx] = xMax;
552 for ( Int_t nDivx = 0; nDivx < n_divx; ++nDivx ) {
553 if ( nDivx < ( n_divx - 1 ) ) {
554 xLimits[nDivx + 1] = xIn[xIndex[xCountIn * ( nDivx + 1 ) / n_divx]];
558 yLimits[nDivx][0] = yMin;
559 yLimits[nDivx][n_divy] = yMax;
562 for ( Int_t i = 0; i < nEntries; ++i ) {
563 if ( ( xs[i] < xMin ) || ( xs[i] > xMax ) || ( ys[i] < yMin ) || ( ys[i] > yMax ) )
565 if ( ( xs[i] < xLimits[nDivx] ) || ( xs[i] >= xLimits[nDivx + 1] ) ||
566 ( ys[i] < yMin ) || ( ys[i] > yMax ) )
568 yIn[yCountIn] = ys[i];
572 TMath::Sort( yCountIn, yIn, yIndex, false );
574 for ( Int_t nDivy = 1; nDivy < n_divy; ++nDivy ) {
575 yLimits[nDivx][nDivy] = yIn[yIndex[yCountIn * nDivy / n_divy]];
585 for ( Int_t nDivx = 0; nDivx < n_divx; ++nDivx ) {
586 for ( Int_t nDivy = 0; nDivy < n_divy; ++nDivy ) {
589 yLimits[nDivx][nDivy],
590 yLimits[nDivx][nDivy + 1],
void makePlots() Create plots.
void run() Run the calculations.
void getHisto(const Double_t xMin, const Double_t xMax, const Double_t yMin, const Double_t yMax, const Double_t *xs, const Double_t *ys, const Int_t nEntries, const std::vector< Int_t > &divisions, const UInt_t iter=0) Create the template histogram based on the binning scheme.
TString treeName2_ Name of the high stats data tree.
Float_t xMax_ Maximum x coordinate of histograms.
TH2Poly * histo1_ Histogram (constructed from template) filled from tree 1.
TH2Poly * theHisto_ Template histogram constructed from the binning scheme.
TString inputFileName_ Name of the config file.
TH2Poly * pullHisto_ Histogram (constructed from template) filled with pulls of tree1 vs tree2.
virtual ~LauCalcChiSq() Destructor.
TString yName1_ Name of the y-coordinate branch in tree 1.
TString treeName1_ Name of the low stats data tree.
Float_t minContent_ The minimum bin content.
Float_t xMin_ Minimum x coordinate of histograms.
TString xName1_ Name of the x-coordinate branch in tree 1.
Bool_t verbose_ Verbose flag.
void initialiseHistos() Read the config file, read the data and create histograms.
Int_t nParams_ Number of free parameters in fit (used for calculating the ndof)
TH2Poly * histo2_ Histogram (constructed from template) filled from tree 2.
Float_t yMin_ Minimum y coordinate of histograms.
Float_t yMax_ Maximum y coordinate of histograms.
void calculateChiSq() Calculate the chisq from the data histograms.
LauCalcChiSq(const TString &inputFileName="chiSqInput.txt") Constructor.
TString xName2_ Name of the x-coordinate branch in tree 2.
TString yName2_ Name of the y-coordinate branch in tree 2.
void pickBinning(const Double_t *xs, const Double_t *ys, const Int_t nEntries, std::vector< Int_t > &divisions) Choose the binning scheme.
TString fileName2_ Name of the high stats data file.
Float_t scaleFactor_ Scalefactor between low and high stats data samples.
TH2Poly * chiSqHisto_ Histogram (constructed from template) filled with chisq of tree1 vs tree2.
TH2Poly * chiSqSignedHisto_ Histogram (constructed from template) filled with signed chisq of tree1 vs tree2.
TString fileName1_ Name of the low stats data file.
File containing declaration of LauCalcChiSq class.
|