laura is hosted by Hepforge, IPPP Durham
Laura++  3.6.0
A maximum likelihood fitting package for performing Dalitz-plot analysis.
LauCalcChiSq.cc
Go to the documentation of this file.
1 
2 /*
3 Copyright 2008 University of Warwick
4 
5 Licensed under the Apache License, Version 2.0 (the "License");
6 you may not use this file except in compliance with the License.
7 You may obtain a copy of the License at
8 
9  http://www.apache.org/licenses/LICENSE-2.0
10 
11 Unless required by applicable law or agreed to in writing, software
12 distributed under the License is distributed on an "AS IS" BASIS,
13 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 See the License for the specific language governing permissions and
15 limitations under the License.
16 */
17 
18 /*
19 Laura++ package authors:
20 John Back
21 Paul Harrison
22 Thomas Latham
23 */
24 
50 #include "LauCalcChiSq.hh"
51 
52 #include "TAxis.h"
53 #include "TCanvas.h"
54 #include "TColor.h"
55 #include "TFile.h"
56 #include "TMath.h"
57 #include "TStyle.h"
58 #include "TSystem.h"
59 #include "TTree.h"
60 
61 #include <cmath>
62 #include <cstdlib>
63 #include <fstream>
64 #include <iostream>
65 
66 LauCalcChiSq::LauCalcChiSq( const TString& inputFileName ) :
67  inputFileName_( inputFileName ),
68  fileName1_( "" ),
69  fileName2_( "" ),
70  treeName1_( "" ),
71  treeName2_( "" ),
72  xName1_( "" ),
73  xName2_( "" ),
74  yName1_( "" ),
75  yName2_( "" ),
76  minContent_( 10.0 ),
77  histo1_( 0 ),
78  histo2_( 0 ),
79  chiSqHisto_( 0 ),
80  chiSqSignedHisto_( 0 ),
81  xMin_( 0.0 ),
82  xMax_( 0.0 ),
83  yMin_( 0.0 ),
84  yMax_( 0.0 ),
85  nParams_( 0 ),
86  scaleFactor_( 1.0 ),
87  verbose_( kFALSE )
88 {
89 }
90 
92 {
93 }
94 
96 {
97  std::cout << "Running chi-squared algorithm" << std::endl;
98  this->initialiseHistos();
99 
100  std::cout << "Calculating chi-squared" << std::endl;
101  this->calculateChiSq();
102 
103  //make plots
104  this->makePlots();
105 
106  // Output the various histograms
107  std::cout << "Writing out histogram output" << std::endl;
108 
109  TFile* outFile = new TFile( "checkHistos.root", "recreate" );
110 
111  histo1_->SetDirectory( outFile );
112  histo2_->SetDirectory( outFile );
113  pullHisto_->SetDirectory( outFile );
114  chiSqHisto_->SetDirectory( outFile );
115  chiSqSignedHisto_->SetDirectory( outFile );
116 
117  outFile->Write();
118  outFile->Close();
119 
120  std::cout << "Done" << std::endl;
121 }
122 
124 {
125  Float_t toyVal( 0. ), dataVal( 0. );
126  Int_t minContent( 0 ), ndof( 0 );
127  Float_t diff( 0. ), chiSq( 0. ), totalChiSq( 0. );
128 
129  minContent = histo1_->GetBinContent( 1 );
130 
131  for ( Int_t i = 1; i <= histo1_->GetNumberOfBins(); ++i ) {
132  //keep track of actual minimum
133  if ( histo1_->GetBinContent( i ) < minContent ) {
134  minContent = histo1_->GetBinContent( i );
135  }
136 
137  // Calculate Pearson chi-square for this bin, using the
138  // second histogram for the expected distribution
139  chiSq = 0.;
140  toyVal = histo2_->GetBinContent( i );
141  dataVal = histo1_->GetBinContent( i );
142  diff = dataVal - toyVal;
143  if ( toyVal > 0 )
144  chiSq = ( diff * diff ) / toyVal;
145  totalChiSq += chiSq;
146 
147  chiSqHisto_->SetBinContent( i, chiSq );
148 
149  if ( diff > 0 ) {
150  chiSqSignedHisto_->SetBinContent( i, chiSq );
151  pullHisto_->SetBinContent( i, sqrt( chiSq ) );
152  } else {
153  chiSqSignedHisto_->SetBinContent( i, -chiSq );
154  pullHisto_->SetBinContent( i, -sqrt( chiSq ) );
155  }
156  }
157 
158  ndof = histo1_->GetNumberOfBins() - nParams_ - 1;
159 
160  std::cout << "Total ChiSq/nDof = " << totalChiSq << "/" << ndof << " = " << totalChiSq / ndof
161  << std::endl;
162  std::cout << "Actual minimum entries per bin: " << minContent << std::endl;
163 }
164 
166 {
167  gStyle->SetPalette( 1, 0 );
168  const Int_t NRGBs = 5;
169  const Int_t NCont = 255;
170  Double_t stops[NRGBs] = { 0.00, 0.34, 0.61, 0.84, 1.00 };
171  Double_t red[NRGBs] = { 0.00, 0.00, 0.87, 1.00, 0.51 };
172  Double_t green[NRGBs] = { 0.00, 0.81, 1.00, 0.20, 0.00 };
173  Double_t blue[NRGBs] = { 0.51, 1.00, 0.12, 0.00, 0.00 };
174  TColor::CreateGradientColorTable( NRGBs, stops, red, green, blue, NCont );
175  gStyle->SetNumberContours( NCont );
176  gStyle->SetOptStat( 0000 );
177 
178  TCanvas can;
179 
180  can.SetTopMargin( 0.05 );
181  can.SetRightMargin( 0.17 );
182  can.SetBottomMargin( 0.16 );
183  can.SetLeftMargin( 0.14 );
184 
185  histo1_->SetLabelFont( 62, "x" );
186  histo1_->SetLabelFont( 62, "y" );
187  histo1_->SetTitleFont( 62, "x" );
188  histo1_->SetTitleFont( 62, "y" );
189  histo1_->SetTitleSize( 0.06, "x" );
190  histo1_->SetTitleSize( 0.06, "y" );
191  histo1_->SetLabelSize( 0.05, "x" );
192  histo1_->SetLabelSize( 0.05, "y" );
193  histo1_->SetXTitle( xName1_ );
194  histo1_->SetYTitle( yName1_ );
195  histo1_->Draw( "colz" );
196  can.SaveAs( "data.pdf" );
197 
198  histo2_->SetLabelFont( 62, "x" );
199  histo2_->SetLabelFont( 62, "y" );
200  histo2_->SetTitleFont( 62, "x" );
201  histo2_->SetTitleFont( 62, "y" );
202  histo2_->SetTitleSize( 0.06, "x" );
203  histo2_->SetTitleSize( 0.06, "y" );
204  histo2_->SetLabelSize( 0.05, "x" );
205  histo2_->SetLabelSize( 0.05, "y" );
206  histo2_->SetXTitle( xName1_ );
207  histo2_->SetYTitle( yName1_ );
208  histo2_->Draw( "colz" );
209  can.SaveAs( "toy.pdf" );
210 
211  if ( -1. * pullHisto_->GetMinimum() > pullHisto_->GetMaximum() )
212  pullHisto_->SetMaximum( -1. * pullHisto_->GetMinimum() );
213  else
214  pullHisto_->SetMinimum( -1. * pullHisto_->GetMaximum() );
215 
216  pullHisto_->SetLabelFont( 62, "x" );
217  pullHisto_->SetLabelFont( 62, "y" );
218  pullHisto_->SetTitleFont( 62, "x" );
219  pullHisto_->SetTitleFont( 62, "y" );
220  pullHisto_->SetTitleSize( 0.06, "x" );
221  pullHisto_->SetTitleSize( 0.06, "y" );
222  pullHisto_->SetLabelSize( 0.05, "x" );
223  pullHisto_->SetLabelSize( 0.05, "y" );
224  pullHisto_->SetXTitle( xName1_ );
225  pullHisto_->SetYTitle( yName1_ );
226  pullHisto_->Draw( "colz" );
227  can.SaveAs( "pull.pdf" );
228 
229  chiSqHisto_->SetLabelFont( 62, "x" );
230  chiSqHisto_->SetLabelFont( 62, "y" );
231  chiSqHisto_->SetTitleFont( 62, "x" );
232  chiSqHisto_->SetTitleFont( 62, "y" );
233  chiSqHisto_->SetTitleSize( 0.06, "x" );
234  chiSqHisto_->SetTitleSize( 0.06, "y" );
235  chiSqHisto_->SetLabelSize( 0.05, "x" );
236  chiSqHisto_->SetLabelSize( 0.05, "y" );
237  chiSqHisto_->SetXTitle( xName1_ );
238  chiSqHisto_->SetYTitle( yName1_ );
239  chiSqHisto_->Draw( "colz" );
240  can.SaveAs( "chiSq.pdf" );
241 
242  chiSqSignedHisto_->SetLabelFont( 62, "x" );
243  chiSqSignedHisto_->SetLabelFont( 62, "y" );
244  chiSqSignedHisto_->SetTitleFont( 62, "x" );
245  chiSqSignedHisto_->SetTitleFont( 62, "y" );
246  chiSqSignedHisto_->SetTitleSize( 0.06, "x" );
247  chiSqSignedHisto_->SetTitleSize( 0.06, "y" );
248  chiSqSignedHisto_->SetLabelSize( 0.05, "x" );
249  chiSqSignedHisto_->SetLabelSize( 0.05, "y" );
250  chiSqSignedHisto_->SetXTitle( xName1_ );
251  chiSqSignedHisto_->SetYTitle( yName1_ );
252  chiSqSignedHisto_->Draw( "colz" );
253  can.SaveAs( "chiSqSigned.pdf" );
254 }
255 
257 {
258 
259  // Open the input control file:
260  // Low_stat_file_name Low_stat_tree_name Low_stat_x_axis_name Low_stat_y_axis_name
261  // High_stat_file_name High_stat_tree_name High_stat_x_axis_name High_stat_y_axis_name
262  // Min_bin_content N_free_params Low/high_stat_histo_ratio xMin xMax yMin yMax
263  std::ifstream getData( inputFileName_.Data() );
264 
265  // get the info on the low stat histo
266  getData >> fileName1_ >> treeName1_ >> xName1_ >> yName1_;
267  if ( ! getData.good() ) {
268  std::cerr << "Error. Could not read first line of the input file " << inputFileName_
269  << std::endl;
270  gSystem->Exit( EXIT_FAILURE );
271  }
272 
273  // open the file that contains the low stat histogram
274  TFile* file1 = TFile::Open( fileName1_.Data(), "read" );
275 
276  if ( file1 == 0 ) {
277  gSystem->Exit( EXIT_FAILURE );
278  }
279 
280  // retrieve the low stat histogram
281  TTree* tree1 = dynamic_cast<TTree*>( file1->Get( treeName1_.Data() ) );
282 
283  if ( tree1 == 0 ) {
284  std::cerr << "Error. Could not find the tree " << treeName1_ << " in the file "
285  << fileName1_ << std::endl;
286  gSystem->Exit( EXIT_FAILURE );
287  }
288 
289  // get the info on the high stat histogram
290  getData >> fileName2_ >> treeName2_ >> xName2_ >> yName2_;
291  if ( ! getData.good() ) {
292  std::cerr << "Error. Could not read the second line of the input file " << inputFileName_
293  << std::endl;
294  gSystem->Exit( EXIT_FAILURE );
295  }
296 
297  // if both histograms are in the same file then just retrieve the
298  // high stat histogram from the file we already have open
299  TFile* file2( 0 );
300  TTree* tree2( 0 );
301  if ( fileName2_ == fileName1_ ) {
302  tree2 = dynamic_cast<TTree*>( file1->Get( treeName2_.Data() ) );
303  }
304  // otherwise open the other file and retrieve the high stat histogram from there
305  else {
306  file2 = TFile::Open( fileName2_.Data(), "read" );
307 
308  if ( file2 == 0 ) {
309  gSystem->Exit( EXIT_FAILURE );
310  }
311 
312  tree2 = dynamic_cast<TTree*>( file2->Get( treeName2_.Data() ) );
313  }
314 
315  if ( tree2 == 0 ) {
316  std::cerr << "Error. Could not find the tree " << treeName2_ << " in the file "
317  << fileName2_ << std::endl;
318  gSystem->Exit( EXIT_FAILURE );
319  }
320 
321  // get the info on the minimum content, number of parameters and scalefactor
322  Int_t nParameters( 0 );
323  Float_t minContent( 0.0 ), scaleFactor( 1.0 ), xMin( 0.0 ), xMax( 1.0 ), yMin( 0.0 ), yMax( 1.0 );
324  getData >> minContent >> nParameters >> scaleFactor >> xMin >> xMax >> yMin >> yMax;
325  if ( getData.good() ) {
326  minContent_ = minContent;
327  nParams_ = nParameters;
328  scaleFactor_ = scaleFactor;
329  xMin_ = xMin;
330  xMax_ = xMax;
331  yMin_ = yMin;
332  yMax_ = yMax;
333  }
334 
335  // close the text file
336  getData.close();
337 
338  std::cout << "Using the files and trees: " << fileName1_ << "; " << treeName1_ << " and "
339  << fileName2_ << "; " << treeName2_ << std::endl;
340  std::cout << "Relative scaling factor histo1/histo2 set to " << scaleFactor_ << std::endl;
341  std::cout << "Minimum bin content is " << minContent_ << std::endl;
342  std::cout << "Number of free parameters is " << nParams_ << std::endl;
343 
344  Double_t x;
345  Double_t y;
346 
347  tree1->SetBranchAddress( xName1_.Data(), &x );
348  tree1->SetBranchAddress( yName1_.Data(), &y );
349 
350  Int_t nEntries = tree1->GetEntries();
351 
352  Double_t* xs = new Double_t[nEntries];
353  Double_t* ys = new Double_t[nEntries];
354 
355  for ( Int_t i = 0; i < nEntries; ++i ) {
356  tree1->GetEntry( i );
357  xs[i] = x;
358  ys[i] = y;
359  }
360 
361  theHisto_ = new TH2Poly( "theHisto_", "", xMin_, xMax_, yMin_, yMax_ );
362 
363  //select the number of divisions to get us closest to minContent entries per bin
364  std::vector<Int_t> divisions;
365  this->pickBinning( xs, ys, nEntries, divisions );
366 
367  //perform the adaptive bining based on histo1_
368  this->getHisto( xMin_, xMax_, yMin_, yMax_, xs, ys, nEntries, divisions );
369 
370  histo1_ = dynamic_cast<TH2Poly*>( theHisto_->Clone( "histo1_" ) );
371  histo2_ = dynamic_cast<TH2Poly*>( theHisto_->Clone( "histo2_" ) );
372  pullHisto_ = dynamic_cast<TH2Poly*>( theHisto_->Clone( "pullHisto_" ) );
373  chiSqHisto_ = dynamic_cast<TH2Poly*>( theHisto_->Clone( "chiSqHisto_" ) );
374  chiSqSignedHisto_ = dynamic_cast<TH2Poly*>( theHisto_->Clone( "chiSqSignedHisto_" ) );
375  delete[] xs;
376  delete[] ys;
377 
378  //fill the two histograms from the trees
379  TString drawString1, drawString2, weightString2;
380  drawString1 += yName1_;
381  drawString1 += ":";
382  drawString1 += xName1_;
383  drawString1 += ">>histo1_";
384  drawString2 += yName2_;
385  drawString2 += ":";
386  drawString2 += xName2_;
387  drawString2 += ">>histo2_";
388  weightString2 += scaleFactor_;
389 
390  tree1->Draw( drawString1 );
391  tree2->Draw( drawString2, weightString2 );
392 
393  histo1_->SetDirectory( 0 );
394  histo2_->SetDirectory( 0 );
395  pullHisto_->SetDirectory( 0 );
396  chiSqHisto_->SetDirectory( 0 );
397  chiSqSignedHisto_->SetDirectory( 0 );
398 
399  // close the file(s) containing the trees
400  if ( file1 != 0 ) {
401  file1->Close();
402  }
403  delete file1;
404  if ( file2 != 0 ) {
405  file2->Close();
406  }
407  delete file2;
408 }
409 
410 void LauCalcChiSq::pickBinning( const Double_t* xs,
411  const Double_t* ys,
412  const Int_t nEntries,
413  std::vector<Int_t>& divisions )
414 {
415  //first check how many events we have within the histogram limits
416  Int_t nIn( 0 );
417  for ( Int_t i = 0; i < nEntries; ++i ) {
418  if ( xs[i] < xMax_ && xs[i] >= xMin_ && ys[i] < yMax_ && ys[i] >= yMin_ ) {
419  ++nIn;
420  }
421  }
422 
423  //aim to have exactly minContent events in each bin
424  Int_t nBinsTarget = nIn / minContent_;
425 
426  std::cout << "Target is " << minContent_ << " entries per bin" << std::endl;
427  std::cout << "Aiming to divide " << nIn << " entries between " << nBinsTarget << " bins"
428  << std::endl;
429 
430  //we will iteratively sub-divide histogram bins into either 4, 9, 25, 49 or 121
431  //here we figure out how many 4s, 9s, 25s, 49s and 121s to use to best match our target without exceeding it
432  Int_t nDivisions( 0 ), nNines( 0 ), nTwentyFives( 0 ), nFortyNines( 0 ), nEleventyElevens( 0 ),
433  nBins( 1 );
434  Int_t nDivisionsBest( 0 ), nNinesBest( 0 ), nTwentyFivesBest( 0 ), nFortyNinesBest( 0 ),
435  nEleventyElevensBest( 0 ), nBinsBest( 1 );
436 
437  do {
438  ++nDivisions;
439  for ( nNines = 0; nNines <= nDivisions; ++nNines ) {
440  for ( nTwentyFives = 0; nTwentyFives <= nDivisions - nNines; ++nTwentyFives ) {
441  for ( nFortyNines = 0; nFortyNines <= nDivisions - nNines - nTwentyFives;
442  ++nFortyNines ) {
443  for ( nEleventyElevens = 0;
444  nEleventyElevens <= nDivisions - nNines - nTwentyFives - nFortyNines;
445  ++nEleventyElevens ) {
446  nBins = TMath::Power( 4,
447  nDivisions - nNines - nTwentyFives - nFortyNines -
448  nEleventyElevens ) *
449  TMath::Power( 9, nNines ) * TMath::Power( 25, nTwentyFives ) *
450  TMath::Power( 49, nFortyNines ) *
451  TMath::Power( 121, nEleventyElevens );
452  if ( nBins < nBinsTarget && nBins > nBinsBest ) {
453  //keep track of the best number of bins so far
454  nBinsBest = nBins;
455  nDivisionsBest = nDivisions;
456  nNinesBest = nNines;
457  nTwentyFivesBest = nTwentyFives;
458  nFortyNinesBest = nFortyNines;
459  nEleventyElevensBest = nEleventyElevens;
460  }
461  }
462  }
463  }
464  }
465  } while ( TMath::Power( 4, nDivisions + 1 ) <
466  nBinsTarget ); //if 4^n > target then we've gone far enough
467 
468  std::cout << "Using " << nBinsBest << " bins" << std::endl;
469 
470  //fill the vector with the divisions that we want to make
471  for ( Int_t i = 0; i < nEleventyElevensBest; ++i ) {
472  divisions.push_back( 11 );
473  }
474  for ( Int_t i = 0; i < nFortyNinesBest; ++i ) {
475  divisions.push_back( 7 );
476  }
477  for ( Int_t i = 0; i < nTwentyFivesBest; ++i ) {
478  divisions.push_back( 5 );
479  }
480  for ( Int_t i = 0; i < nNinesBest; ++i ) {
481  divisions.push_back( 3 );
482  }
483  for ( Int_t i = 0; i < nDivisionsBest - nNinesBest - nTwentyFivesBest - nFortyNinesBest -
484  nEleventyElevensBest;
485  ++i ) {
486  divisions.push_back( 2 );
487  }
488 }
489 
490 void LauCalcChiSq::getHisto( const Double_t xMin,
491  const Double_t xMax,
492  const Double_t yMin,
493  const Double_t yMax,
494  const Double_t* xs,
495  const Double_t* ys,
496  const Int_t nEntries,
497  const std::vector<Int_t>& divisions,
498  const UInt_t iter )
499 {
500 
501  //If it's the last iteration create the bin and return
502  if ( iter == divisions.size() ) {
503  Double_t* x_new = new Double_t[5];
504  Double_t* y_new = new Double_t[5];
505  x_new[0] = xMin;
506  x_new[1] = xMin;
507  x_new[2] = xMax;
508  x_new[3] = xMax;
509  x_new[4] = xMin;
510  y_new[0] = yMin;
511  y_new[1] = yMax;
512  y_new[2] = yMax;
513  y_new[3] = yMin;
514  y_new[4] = yMin;
515  theHisto_->AddBin( 5, x_new, y_new );
516  if ( verbose_ )
517  std::cout << "Adding bin from (" << xMin << "," << yMin << ") to (" << xMax << ","
518  << yMax << ")" << std::endl;
519  return;
520  }
521 
522  //If not the last iteration then divide the bin
523  Int_t n_divx = divisions[iter];
524  Int_t n_divy = divisions[iter];
525 
526  if ( verbose_ )
527  std::cout << "Dividing bin from (" << xMin << "," << yMin << ") to (" << xMax << "," << yMax
528  << ") into " << n_divx << " by " << n_divy << " subbins" << std::endl;
529 
530  Double_t* xIn = new Double_t[nEntries];
531  Double_t* yIn = new Double_t[nEntries];
532  Int_t* xIndex = new Int_t[nEntries + 2];
533  Int_t* yIndex = new Int_t[nEntries + 2];
534 
535  Int_t xCountIn = 0;
536  for ( Int_t i = 0; i < nEntries; ++i ) {
537  if ( ( xs[i] < xMin ) || ( xs[i] > xMax ) || ( ys[i] < yMin ) || ( ys[i] > yMax ) )
538  continue;
539  xIn[xCountIn] = xs[i];
540  ++xCountIn;
541  }
542 
543  //find the delimitting x and y values for the sub bins
544  Double_t xLimits[n_divx + 1];
545  Double_t yLimits[n_divx][n_divy + 1];
546 
547  //first sort entries in x and divide bin into equally populated bins in x
548  TMath::Sort( xCountIn, xIn, xIndex, false );
549 
550  xLimits[0] = xMin;
551  xLimits[n_divx] = xMax;
552  for ( Int_t nDivx = 0; nDivx < n_divx; ++nDivx ) {
553  if ( nDivx < ( n_divx - 1 ) ) {
554  xLimits[nDivx + 1] = xIn[xIndex[xCountIn * ( nDivx + 1 ) / n_divx]];
555  }
556 
557  //for each bin in x divide into equally populated bins in y
558  yLimits[nDivx][0] = yMin;
559  yLimits[nDivx][n_divy] = yMax;
560  Int_t yCountIn = 0;
561 
562  for ( Int_t i = 0; i < nEntries; ++i ) {
563  if ( ( xs[i] < xMin ) || ( xs[i] > xMax ) || ( ys[i] < yMin ) || ( ys[i] > yMax ) )
564  continue;
565  if ( ( xs[i] < xLimits[nDivx] ) || ( xs[i] >= xLimits[nDivx + 1] ) ||
566  ( ys[i] < yMin ) || ( ys[i] > yMax ) )
567  continue;
568  yIn[yCountIn] = ys[i];
569  ++yCountIn;
570  }
571 
572  TMath::Sort( yCountIn, yIn, yIndex, false );
573 
574  for ( Int_t nDivy = 1; nDivy < n_divy; ++nDivy ) {
575  yLimits[nDivx][nDivy] = yIn[yIndex[yCountIn * nDivy / n_divy]];
576  }
577  }
578 
579  delete[] xIn;
580  delete[] yIn;
581  delete[] xIndex;
582  delete[] yIndex;
583 
584  //call for each sub bin
585  for ( Int_t nDivx = 0; nDivx < n_divx; ++nDivx ) {
586  for ( Int_t nDivy = 0; nDivy < n_divy; ++nDivy ) {
587  this->getHisto( xLimits[nDivx],
588  xLimits[nDivx + 1],
589  yLimits[nDivx][nDivy],
590  yLimits[nDivx][nDivy + 1],
591  xs,
592  ys,
593  nEntries,
594  divisions,
595  iter + 1 );
596  }
597  }
598 }
void makePlots()
Create plots.
void run()
Run the calculations.
Definition: LauCalcChiSq.cc:95
void getHisto(const Double_t xMin, const Double_t xMax, const Double_t yMin, const Double_t yMax, const Double_t *xs, const Double_t *ys, const Int_t nEntries, const std::vector< Int_t > &divisions, const UInt_t iter=0)
Create the template histogram based on the binning scheme.
TString treeName2_
Name of the high stats data tree.
Float_t xMax_
Maximum x coordinate of histograms.
TH2Poly * histo1_
Histogram (constructed from template) filled from tree 1.
TH2Poly * theHisto_
Template histogram constructed from the binning scheme.
TString inputFileName_
Name of the config file.
TH2Poly * pullHisto_
Histogram (constructed from template) filled with pulls of tree1 vs tree2.
virtual ~LauCalcChiSq()
Destructor.
Definition: LauCalcChiSq.cc:91
TString yName1_
Name of the y-coordinate branch in tree 1.
TString treeName1_
Name of the low stats data tree.
Float_t minContent_
The minimum bin content.
Float_t xMin_
Minimum x coordinate of histograms.
TString xName1_
Name of the x-coordinate branch in tree 1.
Bool_t verbose_
Verbose flag.
void initialiseHistos()
Read the config file, read the data and create histograms.
Int_t nParams_
Number of free parameters in fit (used for calculating the ndof)
TH2Poly * histo2_
Histogram (constructed from template) filled from tree 2.
Float_t yMin_
Minimum y coordinate of histograms.
Float_t yMax_
Maximum y coordinate of histograms.
void calculateChiSq()
Calculate the chisq from the data histograms.
LauCalcChiSq(const TString &inputFileName="chiSqInput.txt")
Constructor.
Definition: LauCalcChiSq.cc:66
TString xName2_
Name of the x-coordinate branch in tree 2.
TString yName2_
Name of the y-coordinate branch in tree 2.
void pickBinning(const Double_t *xs, const Double_t *ys, const Int_t nEntries, std::vector< Int_t > &divisions)
Choose the binning scheme.
TString fileName2_
Name of the high stats data file.
Float_t scaleFactor_
Scalefactor between low and high stats data samples.
TH2Poly * chiSqHisto_
Histogram (constructed from template) filled with chisq of tree1 vs tree2.
TH2Poly * chiSqSignedHisto_
Histogram (constructed from template) filled with signed chisq of tree1 vs tree2.
TString fileName1_
Name of the low stats data file.
File containing declaration of LauCalcChiSq class.