laura is hosted by Hepforge, IPPP Durham
Laura++  v3r1
A maximum likelihood fitting package for performing Dalitz-plot analysis.

Class for defining a Gaussian PDF (DP dependent). More...

#include <LauDPDepGaussPdf.hh>

Inheritance diagram for LauDPDepGaussPdf:
LauAbsPdf

Public Types

enum  DPAxis {
  M12, M13, M23, CentreDist,
  MMIN, MMAX
}
 Define possibilties for the DP axes. More...
 
- Public Types inherited from LauAbsPdf
enum  IntMethod { GaussLegendre, Trapezoid }
 The possible numerical intergration methods. More...
 
typedef std::vector< Double_t > LauAbscissas
 The type used for containing multiple abscissa values. More...
 

Public Member Functions

 LauDPDepGaussPdf (const TString &theVarName, const std::vector< LauAbsRValue * > &params, Double_t minAbscissa, Double_t maxAbscissa, const LauDaughters *daughters, const std::vector< Double_t > &meanCoeffs, const std::vector< Double_t > &sigmaCoeffs, DPAxis dpAxis)
 Constructor. More...
 
virtual ~LauDPDepGaussPdf ()
 Destructor. More...
 
virtual Bool_t isDPDependent () const
 Specifies whether or not the PDF is DP dependent. More...
 
virtual void calcLikelihoodInfo (const LauAbscissas &abscissas)
 Calculate the likelihood (and intermediate info) for a given abscissa. More...
 
virtual void calcNorm ()
 Calculate the normalisation. More...
 
virtual void calcPDFHeight (const LauKinematics *kinematics)
 Calculate the PDF height. More...
 
- Public Member Functions inherited from LauAbsPdf
 LauAbsPdf (const TString &theVarName, const std::vector< LauAbsRValue * > &params, Double_t minAbscissa, Double_t maxAbscissa)
 Constructor for a 1D PDF. More...
 
 LauAbsPdf (const std::vector< TString > &theVarNames, const std::vector< LauAbsRValue * > &params, const LauFitData &minAbscissas, const LauFitData &maxAbscissas)
 Constructor for a multidimensional PDF. More...
 
virtual ~LauAbsPdf ()
 Destructor. More...
 
virtual const TString & varName () const
 Retrieve the name of the abscissa. More...
 
virtual std::vector< TString > varNames () const
 Retrieve the names of the abscissas. More...
 
virtual UInt_t nParameters () const
 Retrieve the number of PDF parameters. More...
 
virtual UInt_t nFixedParameters () const
 Retrieve the number of fixed PDF parameters. More...
 
virtual UInt_t nInputVars () const
 Retrieve the number of abscissas. More...
 
virtual Double_t getMinAbscissa () const
 Retrieve the minimum value of the (primary) abscissa. More...
 
virtual Double_t getMaxAbscissa () const
 Retrieve the maximum value of the (primary) abscissa. More...
 
virtual Double_t getRange () const
 Retrieve the range of the (primary) abscissa. More...
 
virtual Double_t getMinAbscissa (const TString &theVarName) const
 Retrieve the minimum value of the specified abscissa. More...
 
virtual Double_t getMaxAbscissa (const TString &theVarName) const
 Retrieve the maximum value of the specified abscissa. More...
 
virtual Double_t getRange (const TString &theVarName) const
 Retrieve the range of the specified abscissa. More...
 
virtual LauFitData getMinAbscissas () const
 Retrieve the minimum values of all the abscissas. More...
 
virtual LauFitData getMaxAbscissas () const
 Retrieve the maximum values of all the abscissas. More...
 
virtual LauFitData getRanges () const
 Retrieve the ranges of all the abscissas. More...
 
virtual void updatePulls ()
 Update the pulls for all parameters. More...
 
virtual void cacheInfo (const LauFitDataTree &inputData)
 Cache information from data. More...
 
virtual void calcLikelihoodInfo (UInt_t iEvt)
 Retrieve the likelihood (and all associated information) given the event number. More...
 
virtual Double_t getUnNormLikelihood () const
 Retrieve the unnormalised likelihood value. More...
 
virtual Double_t getNorm () const
 Retrieve the normalisation factor. More...
 
virtual Double_t getLikelihood () const
 Retrieve the normalised likelihood value. More...
 
virtual Double_t getLikelihood (const TString &theVarName) const
 For multidimentional PDFs, retrieve the normalised likelihood value of a named variable. More...
 
virtual Double_t getMaxHeight () const
 Retrieve the maximum height. More...
 
virtual LauFitData generate (const LauKinematics *kinematics)
 Generate an event from the PDF. More...
 
virtual void setRandomFun (TRandom *randomFun)
 Set the random function used for toy MC generation. More...
 
virtual const std::vector
< LauAbsRValue * > & 
getParameters () const
 Retrieve the parameters of the PDF, e.g. so that they can be loaded into a fit. More...
 
virtual std::vector
< LauAbsRValue * > & 
getParameters ()
 Retrieve the parameters of the PDF, e.g. so that they can be loaded into a fit. More...
 
virtual Bool_t heightUpToDate () const
 Check if the maximum height of the PDF is up to date. More...
 
virtual void heightUpToDate (Bool_t hutd)
 Set whether the height is up to date. More...
 
virtual Bool_t cachePDF () const
 Check if the PDF is to be cached. More...
 
virtual Int_t nNormPoints () const
 Retrieve the number of points to integrate over when normalising. More...
 
virtual void nNormPoints (Int_t nPoints)
 Set the number of points to integrate over when normalising. More...
 
virtual IntMethod integMethod () const
 Retrieve the integration method used to normalise the PDF. More...
 
virtual void integMethod (IntMethod method)
 Set the integration method used to normalise the PDF. More...
 

Protected Member Functions

void scalePars (Double_t dpPos)
 Scale parameters by their dependence on the DP position. More...
 
- Protected Member Functions inherited from LauAbsPdf
virtual void cachePDF (Bool_t doCachePDF)
 Set whether the PDF is to be cached. More...
 
virtual Double_t integrGaussLegendre ()
 Integrate the PDF using the Gauss-Legendre method. More...
 
virtual Double_t integTrapezoid ()
 Integrate the PDF using the simple trapezoid method. More...
 
virtual void setNorm (Double_t norm)
 Set the normalisation factor. More...
 
virtual void setMaxHeight (Double_t maxHeight)
 Set the maximum height. More...
 
virtual void setMinAbscissa (const TString &theVarName, Double_t minAbscissa)
 Set the minimum value of the specified abscissa. More...
 
virtual void setMaxAbscissa (const TString &theVarName, Double_t maxAbscissa)
 Set the maximum value of the specified abscissa. More...
 
virtual void setRange (const TString &theVarName, Double_t minAbscissa, Double_t maxAbscissa)
 Set the range of the specified abscissa. More...
 
virtual Bool_t checkRange (const LauAbscissas &abscissas) const
 Check that all abscissas are within their allowed ranges. More...
 
virtual void setUnNormPDFVal (Double_t unNormPDFVal)
 Set the unnormalised likelihood. More...
 
virtual LauAbsRValuefindParameter (const TString &parName)
 Retrieve the specified parameter. More...
 
virtual const LauAbsRValuefindParameter (const TString &parName) const
 Retrieve the specified parameter. More...
 
virtual TRandom * getRandomFun () const
 Retrieve the random function used for MC generation. More...
 
virtual std::vector
< LauAbscissas > & 
getAbscissas ()
 Retrieve the abscissa(s) More...
 
virtual const std::vector
< LauAbscissas > & 
getAbscissas () const
 Retrieve the abscissa(s) More...
 
virtual std::vector< Double_t > & getUnNormPDFValues ()
 Retrieve the cached unnormalised likelihood values. More...
 
virtual const std::vector
< Double_t > & 
getUnNormPDFValues () const
 Retrieve the cached unnormalised likelihood values. More...
 
virtual void addParameters (std::vector< LauAbsRValue * > &params)
 Add parameters to the PDF. More...
 
virtual Bool_t withinNormCalc () const
 Check whether the calcNorm method is running. More...
 
virtual void withinNormCalc (Bool_t yorn)
 Set flag to track whether the calcNorm method is running. More...
 
virtual Bool_t withinGeneration () const
 Check whether the generate method is running. More...
 
virtual void withinGeneration (Bool_t yorn)
 Set flag to track whether the generate method is running. More...
 
virtual Bool_t normWeightsDone () const
 Check whether the normalisation weights have been calculated. More...
 
virtual void normWeightsDone (Bool_t yorn)
 Set whether the normalisation weights have been calculated. More...
 
virtual void getNormWeights ()
 Calculate the weights and abscissas used for normalisation. More...
 
virtual const std::vector
< LauAbscissas > & 
normAbscissas () const
 Retrieve the abscissa points used for normalisation. More...
 
virtual const std::vector
< Double_t > & 
normWeights () const
 Retrieve the weights used for normalisation. More...
 

Private Member Functions

 LauDPDepGaussPdf (const LauDPDepGaussPdf &other)
 Copy constructor (not implemented) More...
 
LauDPDepGaussPdfoperator= (const LauDPDepGaussPdf &other)
 Copy assignment operator (not implemented) More...
 

Private Attributes

const LauKinematicskinematics_
 The current DP kinematics. More...
 
LauAbsRValuemean_
 Gaussian mean. More...
 
LauAbsRValuesigma_
 Gaussian sigma. More...
 
Double_t meanVal_
 Gaussian mean. More...
 
Double_t sigmaVal_
 Gaussian sigma. More...
 
const std::vector< Double_t > meanCoeffs_
 Coefficients of Gaussian mean. More...
 
const std::vector< Double_t > sigmaCoeffs_
 Coefficients of Gaussian sigma. More...
 
DPAxis dpAxis_
 The DP axis we depend on. More...
 

Detailed Description

Class for defining a Gaussian PDF (DP dependent).

Class that allows the user to define a Gaussian PDF where one or more of the parameters have a polynomial dependence on the DP position.

Definition at line 35 of file LauDPDepGaussPdf.hh.

Member Enumeration Documentation

Define possibilties for the DP axes.

Enumerator
M12 

dependence is on m^2_12

M13 

dependence is on m^2_13

M23 

dependence is on m^2_23

CentreDist 

dependence is on the distance from the DP centre

MMIN 

dependence is on the minimum of m^2_13 and m^2_23

MMAX 

dependence is on the maximum of m^2_13 and m^2_23

Definition at line 39 of file LauDPDepGaussPdf.hh.

Constructor & Destructor Documentation

LauDPDepGaussPdf::LauDPDepGaussPdf ( const TString &  theVarName,
const std::vector< LauAbsRValue * > &  params,
Double_t  minAbscissa,
Double_t  maxAbscissa,
const LauDaughters daughters,
const std::vector< Double_t > &  meanCoeffs,
const std::vector< Double_t > &  sigmaCoeffs,
DPAxis  dpAxis 
)

Constructor.

Parameters
[in]theVarNamethe name of the abscissa variable
[in]paramsthe PDF parameters - mean and sigma
[in]minAbscissathe minimum value of the abscissa
[in]maxAbscissathe maximum value of the abscissa
[in]daughtersthe daughter particles
[in]meanCoeffsthe coefficients of the DP dependence of the Gaussian mean
[in]sigmaCoeffsthe coefficients of the DP dependence of the Gaussian sigma
[in]dpAxisthe DP axis that defines the parameter dependence

Definition at line 32 of file LauDPDepGaussPdf.cc.

LauDPDepGaussPdf::~LauDPDepGaussPdf ( )
virtual

Destructor.

Definition at line 72 of file LauDPDepGaussPdf.cc.

LauDPDepGaussPdf::LauDPDepGaussPdf ( const LauDPDepGaussPdf other)
private

Copy constructor (not implemented)

Member Function Documentation

void LauDPDepGaussPdf::calcLikelihoodInfo ( const LauAbscissas abscissas)
virtual

Calculate the likelihood (and intermediate info) for a given abscissa.

Parameters
[in]abscissasthe values of the abscissa(s)

Implements LauAbsPdf.

Definition at line 82 of file LauDPDepGaussPdf.cc.

void LauDPDepGaussPdf::calcNorm ( )
virtual

Calculate the normalisation.

Reimplemented from LauAbsPdf.

Definition at line 77 of file LauDPDepGaussPdf.cc.

void LauDPDepGaussPdf::calcPDFHeight ( const LauKinematics kinematics)
virtual

Calculate the PDF height.

Parameters
[in]kinematicsthe current DP kinematics

Implements LauAbsPdf.

Definition at line 159 of file LauDPDepGaussPdf.cc.

virtual Bool_t LauDPDepGaussPdf::isDPDependent ( ) const
inlinevirtual

Specifies whether or not the PDF is DP dependent.

Returns
true if the PDF is DP-dependent (the default)

Reimplemented from LauAbsPdf.

Definition at line 73 of file LauDPDepGaussPdf.hh.

LauDPDepGaussPdf& LauDPDepGaussPdf::operator= ( const LauDPDepGaussPdf other)
private

Copy assignment operator (not implemented)

void LauDPDepGaussPdf::scalePars ( Double_t  dpPos)
protected

Scale parameters by their dependence on the DP position.

Parameters
[in]dpPosthe DP position

Definition at line 142 of file LauDPDepGaussPdf.cc.

Member Data Documentation

DPAxis LauDPDepGaussPdf::dpAxis_
private

The DP axis we depend on.

Definition at line 125 of file LauDPDepGaussPdf.hh.

const LauKinematics* LauDPDepGaussPdf::kinematics_
private

The current DP kinematics.

Definition at line 107 of file LauDPDepGaussPdf.hh.

LauAbsRValue* LauDPDepGaussPdf::mean_
private

Gaussian mean.

Definition at line 110 of file LauDPDepGaussPdf.hh.

const std::vector<Double_t> LauDPDepGaussPdf::meanCoeffs_
private

Coefficients of Gaussian mean.

Definition at line 120 of file LauDPDepGaussPdf.hh.

Double_t LauDPDepGaussPdf::meanVal_
private

Gaussian mean.

Definition at line 115 of file LauDPDepGaussPdf.hh.

LauAbsRValue* LauDPDepGaussPdf::sigma_
private

Gaussian sigma.

Definition at line 112 of file LauDPDepGaussPdf.hh.

const std::vector<Double_t> LauDPDepGaussPdf::sigmaCoeffs_
private

Coefficients of Gaussian sigma.

Definition at line 122 of file LauDPDepGaussPdf.hh.

Double_t LauDPDepGaussPdf::sigmaVal_
private

Gaussian sigma.

Definition at line 117 of file LauDPDepGaussPdf.hh.


The documentation for this class was generated from the following files: